On Semiparametrically Dynamic Functional-Coefficient Autoregressive Spatio-Temporal Models with Irregular Location Wide Nonstationarity
Zudi Lu,
Xiaohang Ren and
Rongmao Zhang
Journal of the American Statistical Association, 2024, vol. 119, issue 546, 1032-1043
Abstract:
Nonlinear dynamic modeling of spatio-temporal data is often a challenge, especially due to irregularly observed locations and location-wide nonstationarity. In this article we propose a semiparametric family of Dynamic Functional-coefficient Autoregressive Spatio-Temporal (DyFAST) models to address the difficulties. We specify the autoregressive smoothing coefficients depending dynamically on both a concerned regime and location so that the models can characterize not only the dynamic regime-switching nature but also the location-wide nonstationarity in real data. Different smoothing schemes are then proposed to model the dynamic neighboring-time interaction effects with irregular locations incorporated by (spatial) weight matrices. The first scheme popular in econometrics supposes that the weight matrix is pre-specified. We show that locally optimal bandwidths by a greedy idea popular in machine learning should be cautiously applied. Moreover, many weight matrices can be generated differently by data location features. Model selection is popular, but may suffer from loss of different candidate features. Our second scheme is thus to suggest a weight matrix fusion to let data combine or select the candidates with estimation done simultaneously. Both theoretical properties and Monte Carlo simulations are investigated. The empirical application to an EU energy market dataset further demonstrates the usefulness of our DyFAST models. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2161386 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1032-1043
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2022.2161386
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().