EconPapers    
Economics at your fingertips  
 

A General M-estimation Theory in Semi-Supervised Framework

Shanshan Song, Yuanyuan Lin and Yong Zhou

Journal of the American Statistical Association, 2024, vol. 119, issue 546, 1065-1075

Abstract: We study a class of general M-estimators in the semi-supervised setting, wherein the data are typically a combination of a relatively small labeled dataset and large amounts of unlabeled data. A new estimator, which efficiently uses the useful information contained in the unlabeled data, is proposed via a projection technique. We prove consistency and asymptotic normality, and provide an inference procedure based on K -fold cross-validation. The optimal weights are derived to balance the contributions of the labeled and unlabeled data. It is shown that the proposed method, by taking advantage of the unlabeled data, produces asymptotically more efficient estimation of the target parameters than the supervised counterpart. Supportive numerical evidence is shown in simulation studies. Applications are illustrated in analysis of the homeless data in Los Angeles. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2169699 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1065-1075

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2023.2169699

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1065-1075