Online Smooth Backfitting for Generalized Additive Models
Ying Yang,
Fang Yao and
Peng Zhao
Journal of the American Statistical Association, 2024, vol. 119, issue 546, 1215-1228
Abstract:
We propose an online smoothing backfitting method for generalized additive models coupled with local linear estimation. The idea can be extended to general nonlinear optimization problems. The strategy is to use an appropriate-order expansion to approximate the nonlinear equations and store the coefficients as sufficient statistics which can be updated in an online manner by the dynamic candidate bandwidth method. We investigate the statistical and algorithmic convergences of the proposed method. By defining the relative statistical efficiency and computational cost, we further establish a framework to characterize the tradeoff between estimation performance and computation performance. Simulations and real data examples are provided to illustrate the proposed method and algorithm. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2182213 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1215-1228
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2023.2182213
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().