EconPapers    
Economics at your fingertips  
 

Doubly Robust Capture-Recapture Methods for Estimating Population Size

Manjari Das, Edward H. Kennedy and Nicholas P. Jewell

Journal of the American Statistical Association, 2024, vol. 119, issue 546, 1309-1321

Abstract: Estimation of population size using incomplete lists has a long history across many biological and social sciences. For example, human rights groups often construct partial lists of victims of armed conflicts, to estimate the total number of victims. Earlier statistical methods for this setup often use parametric assumptions, or rely on suboptimal plug-in-type nonparametric estimators; but both approaches can lead to substantial bias, the former via model misspecification and the latter via smoothing. Under an identifying assumption that two lists are conditionally independent given measured covariates, we make several contributions. First, we derive the nonparametric efficiency bound for estimating the capture probability, which indicates the best possible performance of any estimator, and sheds light on the statistical limits of capture-recapture methods. Then we present a new estimator, that has a double robustness property new to capture-recapture, and is near-optimal in a nonasymptotic sense, under relatively mild nonparametric conditions. Next, we give a confidence interval construction method for total population size from generic capture probability estimators, and prove nonasymptotic near-validity. Finally, we apply them to estimate the number of killings and disappearances in Peru during its internal armed conflict between 1980 and 2000. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2187814 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1309-1321

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2023.2187814

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1309-1321