Variable Selection for High-Dimensional Nodal Attributes in Social Networks with Degree Heterogeneity
Jia Wang,
Xizhen Cai,
Xiaoyue Niu and
Runze Li
Journal of the American Statistical Association, 2024, vol. 119, issue 546, 1322-1335
Abstract:
We consider a class of network models, in which the connection probability depends on ultrahigh-dimensional nodal covariates (homophily) and node-specific popularity (degree heterogeneity). A Bayesian method is proposed to select nodal features in both dense and sparse networks under a mild assumption on popularity parameters. The proposed approach is implemented via Gibbs sampling. To alleviate the computational burden for large sparse networks, we further develop a working model in which parameters are updated based on a dense sub-graph at each step. Model selection consistency is established for both models, in the sense that the probability of the true model being selected converges to one asymptotically, even when the dimension grows with the network size at an exponential rate. The performance of the proposed models and estimation procedures are illustrated through Monte Carlo studies and three real world examples. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2187815 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1322-1335
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2023.2187815
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().