EconPapers    
Economics at your fingertips  
 

Bayesian Conditional Transformation Models

Manuel Carlan, Thomas Kneib and Nadja Klein

Journal of the American Statistical Association, 2024, vol. 119, issue 546, 1360-1373

Abstract: Recent developments in statistical regression methodology shift away from pure mean regression toward distributional regression models. One important strand thereof is that of conditional transformation models (CTMs). CTMs infer the entire conditional distribution directly by applying a transformation function to the response conditionally on a set of covariates toward a simple log-concave reference distribution. Thereby, CTMs allow not only variance, kurtosis or skewness but the complete conditional distribution to depend on the explanatory variables. We propose a Bayesian notion of conditional transformation models (BCTMs) focusing on exactly observed continuous responses, but also incorporating extensions to randomly censored and discrete responses. Rather than relying on Bernstein polynomials that have been considered in likelihood-based CTMs, we implement a spline-based parameterization for monotonic effects that are supplemented with smoothness priors. Furthermore, we are able to benefit from the Bayesian paradigm via easily obtainable credible intervals and other quantities without relying on large sample approximations. A simulation study demonstrates the competitiveness of our approach against its likelihood-based counterpart but also Bayesian additive models of location, scale and shape and Bayesian quantile regression. Two applications illustrate the versatility of BCTMs in problems involving real world data, again including the comparison with various types of competitors. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2191820 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1360-1373

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2023.2191820

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1360-1373