Tail Spectral Density Estimation and Its Uncertainty Quantification: Another Look at Tail Dependent Time Series Analysis
Ting Zhang and
Beibei Xu
Journal of the American Statistical Association, 2024, vol. 119, issue 546, 1424-1433
Abstract:
We consider the estimation and uncertainty quantification of the tail spectral density, which provide a foundation for tail spectral analysis of tail dependent time series. The tail spectral density has a particular focus on serial dependence in the tail, and can reveal dependence information that is otherwise not discoverable by the traditional spectral analysis. Understanding the convergence rate of tail spectral density estimators and finding rigorous ways to quantify their statistical uncertainty, however, still stand as a somewhat open problem. The current article aims to fill this gap by providing a novel asymptotic theory on quadratic forms of tail statistics in the double asymptotic setting, based on which we develop the consistency and the long desired central limit theorem for tail spectral density estimators. The results are then used to devise a clean and effective method for constructing confidence intervals to gauge the statistical uncertainty of tail spectral density estimators, and it can be turned into a visualization tool to aid practitioners in examining the tail dependence for their data of interest. Numerical examples including data applications are presented to illustrate the developed results. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2197159 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1424-1433
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2023.2197159
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().