Inference in High-Dimensional Online Changepoint Detection
Yudong Chen,
Tengyao Wang and
Richard J. Samworth
Journal of the American Statistical Association, 2024, vol. 119, issue 546, 1461-1472
Abstract:
We introduce and study two new inferential challenges associated with the sequential detection of change in a high-dimensional mean vector. First, we seek a confidence interval for the changepoint, and second, we estimate the set of indices of coordinates in which the mean changes. We propose an online algorithm that produces an interval with guaranteed nominal coverage, and whose length is, with high probability, of the same order as the average detection delay, up to a logarithmic factor. The corresponding support estimate enjoys control of both false negatives and false positives. Simulations confirm the effectiveness of our methodology, and we also illustrate its applicability on the U.S. excess deaths data from 2017 to 2020. The supplementary material, which contains the proofs of our theoretical results, is available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2199962 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1461-1472
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2023.2199962
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().