EconPapers    
Economics at your fingertips  
 

Anytime-Valid Tests of Conditional Independence Under Model-X

Peter Grünwald, Alexander Henzi and Tyron Lardy

Journal of the American Statistical Association, 2024, vol. 119, issue 546, 1554-1565

Abstract: We propose a sequential, anytime-valid method to test the conditional independence of a response Y and a predictor X given a random vector Z. The proposed test is based on e-statistics and test martingales, which generalize likelihood ratios and allow valid inference at arbitrary stopping times. In accordance with the recently introduced model-X setting, our test depends on the availability of the conditional distribution of X given Z, or at least a sufficiently sharp approximation thereof. Within this setting, we derive a general method for constructing e-statistics for testing conditional independence, show that it leads to growth-rate optimal e-statistics for simple alternatives, and prove that our method yields tests with asymptotic power one in the special case of a logistic regression model. A simulation study is done to demonstrate that the approach is competitive in terms of power when compared to established sequential and nonsequential testing methods, and robust with respect to violations of the model-X assumption. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2205607 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1554-1565

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2023.2205607

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1554-1565