EconPapers    
Economics at your fingertips  
 

Large-Scale Two-Sample Comparison of Support Sets

Haoyu Geng, Xiaolong Cui, Haojie Ren and Changliang Zou

Journal of the American Statistical Association, 2024, vol. 119, issue 546, 1604-1618

Abstract: Two-sample multiple testing has a wide range of applications. Most of the literature considers simultaneous tests of equality of parameters. The article takes a different perspective and investigates the null hypotheses that the two support sets are equal. This formulation of the testing problem is motivated by the fact that in many applications where the two parameter vectors being compared are both sparse, one might be more concerned about the detection of differential sparsity structures rather than the difference in parameter magnitudes. Focusing on this type of problem, we develop a general approach, which adapts the newly proposed symmetry data aggregation tool combined with a novel double thresholding (DT) filter. The DT filter first constructs a sequence of pairs of ranking statistics that fulfill global symmetry properties and then chooses two data-driven thresholds along the ranking to simultaneously control the False Discovery Rate (FDR) and maximize the number of rejections. Several applications of the methodology are given including high-dimensional linear models and Gaussian graphical models. We show that the proposed method is able to asymptotically control the FDR and have power guarantee under certain conditions. Numerical results confirm the effectiveness and robustness of DT in FDR control and detection ability. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2210337 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1604-1618

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2023.2210337

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1604-1618