EconPapers    
Economics at your fingertips  
 

Optimal Design of Experiments on Riemannian Manifolds

Hang Li and Enrique Del Castillo

Journal of the American Statistical Association, 2024, vol. 119, issue 546, 875-886

Abstract: The theory of optimal design of experiments has been traditionally developed on an Euclidean space. In this article, new theoretical results and an algorithm for finding the optimal design of an experiment located on a Riemannian manifold are provided. It is shown that analogously to the results in Euclidean spaces, D-optimal and G-optimal designs are equivalent on manifolds, and we provide a lower bound for the maximum prediction variance of the response evaluated over the manifold. In addition, a converging algorithm that finds the optimal experimental design on manifold data is proposed. Numerical experiments demonstrate the importance of considering the manifold structure in a designed experiment when present, and the superiority of the proposed algorithm. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2146587 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:546:p:875-886

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2022.2146587

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:546:p:875-886