EconPapers    
Economics at your fingertips  
 

Simultaneous Decorrelation of Matrix Time Series

Yuefeng Han, Rong Chen, Cun-Hui Zhang and Qiwei Yao

Journal of the American Statistical Association, 2024, vol. 119, issue 546, 957-969

Abstract: We propose a contemporaneous bilinear transformation for a p × q matrix time series to alleviate the difficulties in modeling and forecasting matrix time series when p and/or q are large. The resulting transformed matrix assumes a block structure consisting of several small matrices, and those small matrix series are uncorrelated across all times. Hence, an overall parsimonious model is achieved by modeling each of those small matrix series separately without the loss of information on the linear dynamics. Such a parsimonious model often has better forecasting performance, even when the underlying true dynamics deviates from the assumed uncorrelated block structure after transformation. The uniform convergence rates of the estimated transformation are derived, which vindicate an important virtue of the proposed bilinear transformation, that is, it is technically equivalent to the decorrelation of a vector time series of dimension max(p, q) instead of p × q. The proposed method is illustrated numerically via both simulated and real data examples. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2151448 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:546:p:957-969

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2022.2151448

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:546:p:957-969