EconPapers    
Economics at your fingertips  
 

Confidently Comparing Estimates with the c-value

Brian L. Trippe, Sameer K. Deshpande and Tamara Broderick

Journal of the American Statistical Association, 2024, vol. 119, issue 546, 983-994

Abstract: Modern statistics provides an ever-expanding toolkit for estimating unknown parameters. Consequently, applied statisticians frequently face a difficult decision: retain a parameter estimate from a familiar method or replace it with an estimate from a newer or more complex one. While it is traditional to compare estimates using risk, such comparisons are rarely conclusive in realistic settings. In response, we propose the “c-value” as a measure of confidence that a new estimate achieves smaller loss than an old estimate on a given dataset. We show that it is unlikely that a large c-value coincides with a larger loss for the new estimate. Therefore, just as a small p-value supports rejecting a null hypothesis, a large c-value supports using a new estimate in place of the old. For a wide class of problems and estimates, we show how to compute a c-value by first constructing a data-dependent high-probability lower bound on the difference in loss. The c-value is frequentist in nature, but we show that it can provide validation of shrinkage estimates derived from Bayesian models in real data applications involving hierarchical models and Gaussian processes. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2022.2153688 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:546:p:983-994

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2022.2153688

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:546:p:983-994