Weighted Functional Data Analysis for the Calibration of a Ground Motion Model in Italy
Teresa Bortolotti,
Riccardo Peli,
Giovanni Lanzano,
Sara Sgobba and
Alessandra Menafoglio
Journal of the American Statistical Association, 2024, vol. 119, issue 547, 1697-1708
Abstract:
Motivated by the crucial implications of Ground Motion Models in terms of seismic hazard analysis and civil protection planning, this work extends a scalar Ground Motion Model for Italy to the framework of Functional Data Analysis. The inherent characteristic of seismic data to be incomplete over the observation domain of oscillation periods entails embedding the analysis in the context of partially observed functional data and performing data reconstruction. This work proposes a novel methodology that accounts for the fact that parts of the curves are directly observed and other parts are reconstructed, thus, characterized by greater uncertainty. The method defines observation-specific functional weights, which enter the estimation process to reduce the impact that the less reliable portions of the curves have on the final estimates. The classical methods of smoothing and concurrent functional regression are extended to include weights. The advantages of the proposed methodology are assessed on synthetic data. Eventually, the weighted functional analysis performed on seismological data is shown to provide a natural smoothing and stabilization of the spectral estimates of the Ground Motion Model considered. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2300506 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:547:p:1697-1708
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2023.2300506
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().