Classified Mixed Model Projections
J. Sunil Rao,
Mengying Li and
Jiming Jiang
Journal of the American Statistical Association, 2024, vol. 119, issue 547, 1805-1819
Abstract:
In many practical problems, there is interest in the estimation of mixed effect projections for new data that are outside the range of the training data. Examples include predicting extreme small area means for rare populations or making treatment decisions for patients who do not fit typical risk profiles. Standard methods have long been known to struggle with such problems since the training data may not provide enough information about potential model changes for these new data values (extrapolation bias). We propose a new framework called Prediction Using Random-effect Extrapolation (PURE) which involves constructing a generalized independent variable hull (gIVH) to isolate a minority training set which is “close” to the prediction space, followed by a regrouping of the minority data according to the response variable which results in a new (but misspecified) random effect distribution. This misspecification reflects “extrapolated random effects” which prove vital to capture information that is needed for accurate model projections. Projections are then made using classified mixed model prediction (CMMP) (?) with the regrouped minority data. Comprehensive simulation studies and analysis of data from the National Longitudinal Mortality Study (NLMS) demonstrate superior predictive performance in these very challenging paradigms. An asymptotic analysis reveals why PURE results in more accurate projections. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2218041 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:547:p:1805-1819
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2023.2218041
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().