EconPapers    
Economics at your fingertips  
 

Frequency Detection and Change Point Estimation for Time Series of Complex Oscillation

Hau-Tieng Wu and Zhou Zhou

Journal of the American Statistical Association, 2024, vol. 119, issue 547, 1945-1956

Abstract: We consider detecting the evolutionary oscillatory pattern of a signal when it is contaminated by nonstationary noises with complexly time-varying data generating mechanism. A high-dimensional dense progressive periodogram test is proposed to accurately detect all oscillatory frequencies. A further phase-adjusted local change point detection algorithm is applied in the frequency domain to detect the locations at which the oscillatory pattern changes. Our method is shown to be able to detect all oscillatory frequencies and the corresponding change points within an accurate range with a prescribed probability asymptotically. A Gaussian approximation scheme and an overlapping-block multiplier bootstrap methodology for sums of complex-valued high dimensional nonstationary time series without variance lower bounds are established, which could be of independent interest. This study is motivated by oscillatory frequency estimation and change point detection problems encountered in physiological time series analysis. An application to spindle detection and estimation in electroencephalogram recorded during sleep is used to illustrate the usefulness of the proposed methodology. Supplementary materials for this article are available online including a standardized description of the materials available for reproducing the work.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2229486 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:547:p:1945-1956

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2023.2229486

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:547:p:1945-1956