EconPapers    
Economics at your fingertips  
 

Factor Augmented Inverse Regression and its Application to Microbiome Data Analysis

Daolin Pang, Hongyu Zhao and Tao Wang

Journal of the American Statistical Association, 2024, vol. 119, issue 547, 1957-1967

Abstract: We investigate the relationship between count data that inform the relative abundance of features of a composition, and factors that influence the composition. Our work is motivated from microbiome studies aiming to extract microbial signatures that are predictive of host phenotypes based on data collected from a group of individuals harboring radically different microbial communities. We introduce multinomial Factor Augmented Inverse Regression (FAIR) of the count vector onto response factors as a general framework for obtaining low-dimensional summaries of the count vector that preserve information relevant to the response. By augmenting known response factors with random latent factors, FAIR extends multinomial logistic regression to account for overdispersion and general correlations among counts. The projections of the count vector onto the loading vectors represent additional contribution, in addition to the projections that result from response factors. The method of maximum variational likelihood and a fast variational expectation-maximization algorithm are proposed for approximate inference based on variational approximation, and the asymptotic properties of the resulting estimator are derived. Moreover, a hybrid information criterion and a group-lasso penalized criterion are proposed for model selection. The effectiveness of FAIR is illustrated through simulations and application to a microbiome dataset. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2231577 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:547:p:1957-1967

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2023.2231577

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:547:p:1957-1967