Optimal Dynamic Treatment Regimes and Partial Welfare Ordering
Sukjin Han
Journal of the American Statistical Association, 2024, vol. 119, issue 547, 2000-2010
Abstract:
Dynamic treatment regimes are treatment allocations tailored to heterogeneous individuals (e.g., via previous outcomes and covariates). The optimal dynamic treatment regime is a regime that maximizes counterfactual welfare. We introduce a framework in which we can partially learn the optimal dynamic regime from observational data, relaxing the sequential randomization assumption commonly employed in the literature but instead using (binary) instrumental variables. We propose the notion of sharp partial ordering of counterfactual welfares with respect to dynamic regimes and establish mapping from data to partial ordering via a set of linear programs. We then characterize the identified set of the optimal regime as the set of maximal elements associated with the partial ordering. We relate the notion of partial ordering with a more conventional notion of partial identification using topological sorts. Practically, topological sorts can be served as a policy benchmark for a policymaker. We apply our method to understand returns to schooling and post-school training as a sequence of treatments by combining data from multiple sources. The framework of this article can be used beyond the current context, for example, in establishing rankings of multiple treatments or policies across different counterfactual scenarios. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2238941 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:547:p:2000-2010
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2023.2238941
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().