Sensitivity to Unobserved Confounding in Studies with Factor-Structured Outcomes
Jiajing Zheng,
Jiaxi Wu,
Alexander D’Amour and
Alexander Franks
Journal of the American Statistical Association, 2024, vol. 119, issue 547, 2026-2037
Abstract:
In this work, we propose an approach for assessing sensitivity to unobserved confounding in studies with multiple outcomes. We demonstrate how prior knowledge unique to the multi-outcome setting can be leveraged to strengthen causal conclusions beyond what can be achieved from analyzing individual outcomes in isolation. We argue that it is often reasonable to make a shared confounding assumption, under which residual dependence amongst outcomes can be used to simplify and sharpen sensitivity analyses. We focus on a class of factor models for which we can bound the causal effects for all outcomes conditional on a single sensitivity parameter that represents the fraction of treatment variance explained by unobserved confounders. We characterize how causal ignorance regions shrink under additional prior assumptions about the presence of null control outcomes, and provide new approaches for quantifying the robustness of causal effect estimates. Finally, we illustrate our sensitivity analysis workflow in practice, in an analysis of both simulated data and a case study with data from the National Health and Nutrition Examination Survey (NHANES). Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2240053 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:547:p:2026-2037
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2023.2240053
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().