De-confounding Causal Inference Using Latent Multiple-Mediator Pathways
Yubai Yuan and
Annie Qu
Journal of the American Statistical Association, 2024, vol. 119, issue 547, 2051-2065
Abstract:
Causal effect estimation from observational data is one of the essential problems in causal inference. However, most estimation methods rely on the strong assumption that all confounders are observed, which is impractical and untestable in the real world. We develop a mediation analysis framework inferring the latent confounder for debiasing both direct and indirect causal effects. Specifically, we introduce generalized structural equation modeling that incorporates structured latent factors to improve the goodness-of-fit of the model to observed data, and deconfound the mediators and outcome simultaneously. One major advantage of the proposed framework is that it uses the causal pathway structure from cause to outcome via multiple mediators to debias the causal effect without requiring external information on latent confounders. In addition, the proposed framework is flexible in terms of integrating powerful nonparametric prediction algorithms while retaining interpretable mediation effects. In theory, we establish the identification of both causal and mediation effects based on the proposed deconfounding method. Numerical experiments on both simulation settings and a normative aging study indicate that the proposed approach reduces the estimation bias of both causal and mediation effects. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2240461 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:547:p:2051-2065
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2023.2240461
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().