EconPapers    
Economics at your fingertips  
 

Nonparametric Finite Mixture: Applications in Overcoming Misclassification Bias

Zi Ye and Solomon W. Harrar

Journal of the American Statistical Association, 2024, vol. 119, issue 547, 2269-2281

Abstract: Investigating the differential effect of treatments in groups defined by patient characteristics is of paramount importance in personalized medicine research. In some studies, participants are first classified as having or not of the characteristic of interest by diagnostic tools, but such classifiers may not be perfectly accurate. The impact of diagnostic misclassification in statistical inference has been recently investigated in parametric model contexts and shown to introduce severe bias in estimating treatment effects and give grossly inaccurate inferences. The article aims to address these problems in a fully nonparametric setting. Methods for consistently estimating and testing meaningful yet nonparametric treatment effects are developed. Along the way, we also construct estimators for misclassification error rates and investigate their asymptotic properties. The proposed methods are applicable for outcomes measured in ordinal, discrete, or continuous scales. They do not require any assumptions, such as the existence of moments. Simulation results show significant advantages of the proposed methods in bias reduction, coverage probability, and power. The applications of the proposed methods are illustrated with gene expression profiling of bronchial airway brushing in asthmatic and healthy control subjects. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2256501 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:547:p:2269-2281

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2023.2256501

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:547:p:2269-2281