Ultimate Pólya Gamma Samplers–Efficient MCMC for Possibly Imbalanced Binary and Categorical Data
Gregor Zens,
Sylvia Frühwirth-Schnatter and
Helga Wagner
Journal of the American Statistical Association, 2024, vol. 119, issue 548, 2548-2559
Abstract:
Modeling binary and categorical data is one of the most commonly encountered tasks of applied statisticians and econometricians. While Bayesian methods in this context have been available for decades now, they often require a high level of familiarity with Bayesian statistics or suffer from issues such as low sampling efficiency. To contribute to the accessibility of Bayesian models for binary and categorical data, we introduce novel latent variable representations based on Pólya-Gamma random variables for a range of commonly encountered logistic regression models. From these latent variable representations, new Gibbs sampling algorithms for binary, binomial, and multinomial logit models are derived. All models allow for a conditionally Gaussian likelihood representation, rendering extensions to more complex modeling frameworks such as state space models straightforward. However, sampling efficiency may still be an issue in these data augmentation based estimation frameworks. To counteract this, novel marginal data augmentation strategies are developed and discussed in detail. The merits of our approach are illustrated through extensive simulations and real data applications. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2259030 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:548:p:2548-2559
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2023.2259030
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().