EconPapers    
Economics at your fingertips  
 

Enveloped Huber Regression

Le Zhou, R. Dennis Cook and Hui Zou

Journal of the American Statistical Association, 2024, vol. 119, issue 548, 2722-2732

Abstract: Huber regression (HR) is a popular flexible alternative to the least squares regression when the error follows a heavy-tailed distribution. We propose a new method called the enveloped Huber regression (EHR) by considering the envelope assumption that there exists some subspace of the predictors that has no association with the response, which is referred to as the immaterial part. More efficient estimation is achieved via the removal of the immaterial part. Different from the envelope least squares (ENV) model whose estimation is based on maximum normal likelihood, the estimation of the EHR model is through Generalized Method of Moments. The asymptotic normality of the EHR estimator is established, and it is shown that EHR is more efficient than HR. Moreover, EHR is more efficient than ENV when the error distribution is heavy-tailed, while maintaining a small efficiency loss when the error distribution is normal. Moreover, our theory also covers the heteroscedastic case in which the error may depend on the covariates. The envelope dimension in EHR is a tuning parameter to be determined by the data in practice. We further propose a novel generalized information criterion (GIC) for dimension selection and establish its consistency. Extensive simulation studies confirm the messages from our theory. EHR is further illustrated on a real dataset. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2277403 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:548:p:2722-2732

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2023.2277403

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:548:p:2722-2732