Optimal and Safe Estimation for High-Dimensional Semi-Supervised Learning
Siyi Deng,
Yang Ning,
Jiwei Zhao and
Heping Zhang
Journal of the American Statistical Association, 2024, vol. 119, issue 548, 2748-2759
Abstract:
We consider the estimation problem in high-dimensional semi-supervised learning. Our goal is to investigate when and how the unlabeled data can be exploited to improve the estimation of the regression parameters of linear model in light of the fact that such linear models may be misspecified in data analysis. We first establish the minimax lower bound for parameter estimation in the semi-supervised setting, and show that this lower bound cannot be achieved by supervised estimators using the labeled data only. We propose an optimal semi-supervised estimator that can attain this lower bound and therefore improves the supervised estimators, provided that the conditional mean function can be consistently estimated with a proper rate. We further propose a safe semi-supervised estimator. We view it safe, because this estimator is always at least as good as the supervised estimators. We also extend our idea to the aggregation of multiple semi-supervised estimators caused by different misspecifications of the conditional mean function. Extensive numerical simulations and a real data analysis are conducted to illustrate our theoretical results. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2277409 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:548:p:2748-2759
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2023.2277409
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().