Bayesian Spline-Based Hidden Markov Models with Applications to Actimetry Data and Sleep Analysis
Sida Chen and
Bärbel Finkenstädt
Journal of the American Statistical Association, 2024, vol. 119, issue 548, 2833-2843
Abstract:
B-spline-based hidden Markov models employ B-splines to specify the emission distributions, offering a more flexible modeling approach to data than conventional parametric HMMs. We introduce a Bayesian framework for inference, enabling the simultaneous estimation of all unknown model parameters including the number of states. A parsimonious knot configuration of the B-splines is identified by the use of a trans-dimensional Markov chain sampling algorithm, while model selection regarding the number of states can be performed based on the marginal likelihood within a parallel sampling framework. Using extensive simulation studies, we demonstrate the superiority of our methodology over alternative approaches as well as its robustness and scalability. We illustrate the explorative use of our methods for data on activity in animals, that is whitetip-sharks. The flexibility of our Bayesian approach also facilitates the incorporation of more realistic assumptions and we demonstrate this by developing a novel hierarchical conditional HMM to analyse human activity for circadian and sleep modeling. Supplementary materials for this article are available online.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2279707 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:548:p:2833-2843
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2023.2279707
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().