EconPapers    
Economics at your fingertips  
 

Online Regularization toward Always-Valid High-Dimensional Dynamic Pricing

Chi-Hua Wang, Zhanyu Wang, Will Wei Sun and Guang Cheng

Journal of the American Statistical Association, 2024, vol. 119, issue 548, 2895-2907

Abstract: –Devising a dynamic pricing policy with always valid online statistical learning procedures is an important and as yet unresolved problem. Most existing dynamic pricing policies, which focus on the faithfulness of adopted customer choice models, exhibit a limited capability for adapting to the online uncertainty of learned statistical models during the pricing process. In this article, we propose a novel approach for designing a dynamic pricing policy based on regularized online statistical learning with theoretical guarantees. The new approach overcomes the challenge of continuous monitoring of the online Lasso procedure and possesses several appealing properties. In particular, we make the decisive observation that the always-validity of pricing decisions builds and thrives on the online regularization scheme. Our proposed online regularization scheme equips the proposed optimistic online regularized maximum likelihood pricing (OORMLP) pricing policy with three major advantages: encode market noise knowledge into pricing process optimism; empower online statistical learning with always-validity overall decision points; envelope prediction error process with time-uniform non-asymptotic oracle inequalities. This type of non-asymptotic inference results allows us to design more sample-efficient and robust dynamic pricing algorithms in practice. In theory, the proposed OORMLP algorithm exploits the sparsity structure of high-dimensional models and secures a logarithmic regret in a decision horizon. These theoretical advances are made possible by proposing an optimistic online Lasso procedure that resolves dynamic pricing problems at the process level, based on a novel use of non-asymptotic martingale concentration. In experiments, we evaluate OORMLP in different synthetic and real pricing problem settings and demonstrate that OORMLP advances the state-of-the-art methods. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2284979 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:548:p:2895-2907

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2023.2284979

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:548:p:2895-2907