EconPapers    
Economics at your fingertips  
 

Balancing Covariates in Randomized Experiments with the Gram–Schmidt Walk Design

Christopher Harshaw, Fredrik Sävje, Daniel A. Spielman and Peng Zhang

Journal of the American Statistical Association, 2024, vol. 119, issue 548, 2934-2946

Abstract: The design of experiments involves a compromise between covariate balance and robustness. This article provides a formalization of this tradeoff and describes an experimental design that allows experimenters to navigate it. The design is specified by a robustness parameter that bounds the worst-case mean squared error of an estimator of the average treatment effect. Subject to the experimenter’s desired level of robustness, the design aims to simultaneously balance all linear functions of potentially many covariates. Less robustness allows for more balance. We show that the mean squared error of the estimator is bounded in finite samples by the minimum of the loss function of an implicit ridge regression of the potential outcomes on the covariates. Asymptotically, the design perfectly balances all linear functions of a growing number of covariates with a diminishing reduction in robustness, effectively allowing experimenters to escape the compromise between balance and robustness in large samples. Finally, we describe conditions that ensure asymptotic normality and provide a conservative variance estimator, which facilitate the construction of asymptotically valid confidence intervals. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2285474 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:548:p:2934-2946

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2023.2285474

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:548:p:2934-2946