EconPapers    
Economics at your fingertips  
 

Model-Robust and Efficient Covariate Adjustment for Cluster-Randomized Experiments

Bingkai Wang, Chan Park, Dylan S. Small and Fan Li

Journal of the American Statistical Association, 2024, vol. 119, issue 548, 2959-2971

Abstract: Cluster-randomized experiments are increasingly used to evaluate interventions in routine practice conditions, and researchers often adopt model-based methods with covariate adjustment in the statistical analyses. However, the validity of model-based covariate adjustment remains unclear when the working models are misspecified, leading to ambiguity of estimands and risk of bias. In this article, we first adapt two model-based methods—generalized estimating equations and linear mixed models—with weighted g-computation to achieve robust inference for cluster-average and individual-average treatment effects. To further overcome the limitations of model-based covariate adjustment methods, we propose efficient estimators for each estimand that allow for flexible covariate adjustment and additionally address cluster size variation dependent on treatment assignment and other cluster characteristics. Such cluster size variations often occur post-randomization and, if ignored, can lead to bias of model-based estimators. For our proposed covariate-adjusted estimators, we prove that when the nuisance functions are consistently estimated by machine learning algorithms, the estimators are consistent, asymptotically normal, and efficient. When the nuisance functions are estimated via parametric working models, the estimators are triply-robust. Simulation studies and analyses of three real-world cluster-randomized experiments demonstrate that the proposed methods are superior to existing alternatives. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2289693 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:548:p:2959-2971

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2023.2289693

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:548:p:2959-2971