EconPapers    
Economics at your fingertips  
 

A Kernel Measure of Dissimilarity between M Distributions

Zhen Huang and Bodhisattva Sen

Journal of the American Statistical Association, 2024, vol. 119, issue 548, 3020-3032

Abstract: Given M≥2 distributions defined on a general measurable space, we introduce a nonparametric (kernel) measure of multi-sample dissimilarity (KMD)—a parameter that quantifies the difference between the M distributions. The population KMD, which takes values between 0 and 1, is 0 if and only if all the M distributions are the same, and 1 if and only if all the distributions are mutually singular. Moreover, KMD possesses many properties commonly associated with f-divergences such as the data processing inequality and invariance under bijective transformations. The sample estimate of KMD, based on independent observations from the M distributions, can be computed in near linear time (up to logarithmic factors) using k-nearest neighbor graphs (for k≥1 fixed). We develop an easily implementable test for the equality of M distributions based on the sample KMD that is consistent against all alternatives where at least two distributions are not equal. We prove central limit theorems for the sample KMD, and provide a complete characterization of the asymptotic power of the test, as well as its detection threshold. The usefulness of our measure is demonstrated via real and synthetic data examples; our method is also implemented in an R package. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2023.2298036 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:548:p:3020-3032

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2023.2298036

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:548:p:3020-3032