EconPapers    
Economics at your fingertips  
 

A Composite Likelihood-Based Approach for Change-Point Detection in Spatio-Temporal Processes

Zifeng Zhao, Ting Fung Ma, Wai Leong Ng and Chun Yip Yau

Journal of the American Statistical Association, 2024, vol. 119, issue 548, 3086-3100

Abstract: This article develops a unified and computationally efficient method for change-point estimation along the time dimension in a nonstationary spatio-temporal process. By modeling a nonstationary spatio-temporal process as a piecewise stationary spatio-temporal process, we consider simultaneous estimation of the number and locations of change-points, and model parameters in each segment. A composite likelihood-based criterion is developed for change-point and parameter estimation. Under the framework of increasing domain asymptotics, theoretical results including consistency and distribution of the estimators are derived under mild conditions. In contrast to classical results in fixed dimensional time series that the localization error of change-point estimator is Op(1) , exact recovery of true change-points is possible in the spatio-temporal setting. More surprisingly, the consistency of change-point estimation can be achieved without any penalty term in the criterion function. In addition, we further establish consistency of the change-point estimator under the infill asymptotics framework where the time domain is increasing while the spatial sampling domain is fixed. A computationally efficient pruned dynamic programming algorithm is developed for the challenging criterion optimization problem. Extensive simulation studies and an application to the U.S. precipitation data are provided to demonstrate the effectiveness and practicality of the proposed method. Supplementary materials for this article are available online.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2024.2302200 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:119:y:2024:i:548:p:3086-3100

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2024.2302200

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jnlasa:v:119:y:2024:i:548:p:3086-3100