EconPapers    
Economics at your fingertips  
 

Model-Free Statistical Inference on High-Dimensional Data

Xu Guo, Runze Li, Zhe Zhang and Changliang Zou

Journal of the American Statistical Association, 2025, vol. 120, issue 549, 186-197

Abstract: This article aims to develop an effective model-free inference procedure for high-dimensional data. We first reformulate the hypothesis testing problem via sufficient dimension reduction framework. With the aid of new reformulation, we propose a new test statistic and show that its asymptotic distribution is χ2 distribution whose degree of freedom does not depend on the unknown population distribution. We further conduct power analysis under local alternative hypotheses. In addition, we study how to control the false discovery rate of the proposed χ2 tests, which are correlated, to identify important predictors under a model-free framework. To this end, we propose a multiple testing procedure and establish its theoretical guarantees. Monte Carlo simulation studies are conducted to assess the performance of the proposed tests and an empirical analysis of a real-world dataset is used to illustrate the proposed methodology. Supplementary materials for this article are available online including a standardized description of the materials available for reproducing the work.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2024.2310314 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:120:y:2025:i:549:p:186-197

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2024.2310314

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-05-02
Handle: RePEc:taf:jnlasa:v:120:y:2025:i:549:p:186-197