Confidence Intervals for Parameters of Unobserved Events
Amichai Painsky
Journal of the American Statistical Association, 2025, vol. 120, issue 549, 226-236
Abstract:
Consider a finite sample from an unknown distribution over a countable alphabet. Unobserved events are alphabet symbols which do not appear in the sample. Estimating the probabilities of unobserved events is a basic problem in statistics and related fields, which was extensively studied in the context of point estimation. In this work we introduce a novel interval estimation scheme for unobserved events. Our proposed framework applies selective inference, as we construct confidence intervals (CIs) for the desired set of parameters. Interestingly, we show that obtained CIs are dimension-free, as they do not grow with the alphabet size. Further, we show that these CIs are (almost) tight, in the sense that they cannot be further improved without violating the prescribed coverage rate. We demonstrate the performance of our proposed scheme in synthetic and real-world experiments, showing a significant improvement over the alternatives. Finally, we apply our proposed scheme to large alphabet modeling. We introduce a novel simultaneous CI scheme for large alphabet distributions which outperforms currently known methods while maintaining the prescribed coverage rate. Supplementary materials for this article are available online including a standardized description of the materials available for reproducing the work.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2024.2314318 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:120:y:2025:i:549:p:226-236
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2024.2314318
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().