CARE: Large Precision Matrix Estimation for Compositional Data
Shucong Zhang,
Huiyuan Wang and
Wei Lin
Journal of the American Statistical Association, 2025, vol. 120, issue 549, 305-317
Abstract:
High-dimensional compositional data are prevalent in many applications. The simplex constraint poses intrinsic challenges to inferring the conditional dependence relationships among the components forming a composition, as encoded by a large precision matrix. We introduce a precise specification of the compositional precision matrix and relate it to its basis counterpart, which is shown to be asymptotically identifiable under suitable sparsity assumptions. By exploiting this connection, we propose a composition adaptive regularized estimation (CARE) method for estimating the sparse basis precision matrix. We derive rates of convergence for the estimator and provide theoretical guarantees on support recovery and data-driven parameter tuning. Our theory reveals an intriguing tradeoff between identification and estimation, thereby highlighting the blessing of dimensionality in compositional data analysis. In particular, in sufficiently high dimensions, the CARE estimator achieves minimax optimality and performs as well as if the basis were observed. We further discuss how our framework can be extended to handle data containing zeros, including sampling zeros and structural zeros. The advantages of CARE over existing methods are illustrated by simulation studies and an application to inferring microbial ecological networks in the human gut. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2024.2335586 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:120:y:2025:i:549:p:305-317
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2024.2335586
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().