EconPapers    
Economics at your fingertips  
 

Controlled Discovery and Localization of Signals via Bayesian Linear Programming

Asher Spector and Lucas Janson

Journal of the American Statistical Association, 2025, vol. 120, issue 549, 460-471

Abstract: Scientists often must simultaneously localize and discover signals. For instance, in genetic fine-mapping, high correlations between nearby genetic variants make it hard to identify the exact locations of causal variants. So the statistical task is to output as many disjoint regions containing a signal as possible, each as small as possible, while controlling false positives. Similar problems arise, for example, when locating stars in astronomical surveys and in changepoint detection. Common Bayesian approaches to these problems involve computing a posterior distribution over signal locations. However, existing procedures to translate these posteriors into credible regions for the signals fail to capture all the information in the posterior, leading to lower power and (sometimes) inflated false discoveries. We introduce Bayesian Linear Programming (BLiP), which can efficiently convert any posterior distribution over signals into credible regions for signals. BLiP overcomes an extremely high-dimensional and nonconvex problem to verifiably nearly maximize expected power while controlling false positives. Applying BLiP to existing state-of-the-art analyses of UK Biobank data (for genetic fine-mapping) and the Sloan Digital Sky Survey (for astronomical point source detection) increased power by 30%–120% in just a few minutes of additional computation. BLiP is implemented in pyblip (Python) and blipr (R). Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2024.2347667 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:120:y:2025:i:549:p:460-471

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2024.2347667

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-05-02
Handle: RePEc:taf:jnlasa:v:120:y:2025:i:549:p:460-471