Tests for Large-Dimensional Shape Matrices via Tyler’s M Estimators
Runze Li,
Weiming Li and
Qinwen Wang
Journal of the American Statistical Association, 2025, vol. 120, issue 549, 472-485
Abstract:
Tyler’s M estimator, as a robust alternative to the sample covariance matrix, has been widely applied in robust statistics. However, classical theory on Tyler’s M estimator is mainly developed in the low-dimensional regime for elliptical populations. It remains largely unknown when the parameter of dimension p grows proportionally to the sample size n for general populations. By using the eigenvalues of Tyler’s M estimator, this article develops tests for the identity and equality of shape matrices in a large-dimensional framework where the dimension-to-sample size ratio p/n has a limit in (0, 1). The proposed tests can be applied to a broad class of multivariate distributions including the family of elliptical distributions (see model (2.1) for details). To analyze both the null and alternative distributions of the proposed tests, we provide a unified theory on the spectrum of a large-dimensional Tyler’s M estimator when the underlying population is general. Simulation results demonstrate good performance and robustness of our tests. An empirical analysis of the Fama-French 49 industrial portfolios is carried out to demonstrate the shape of the portfolios varying. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2024.2350573 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:120:y:2025:i:549:p:472-485
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2024.2350573
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().