EconPapers    
Economics at your fingertips  
 

Off-Policy Evaluation in Doubly Inhomogeneous Environments

Zeyu Bian, Chengchun Shi, Zhengling Qi and Lan Wang

Journal of the American Statistical Association, 2025, vol. 120, issue 550, 1102-1114

Abstract: This work aims to study off-policy evaluation (OPE) under scenarios where two key reinforcement learning (RL) assumptions—temporal stationarity and individual homogeneity are both violated. To handle the “double inhomogeneities”, we propose a class of latent factor models for the reward and transition functions, under which we develop a general OPE framework that consists of both model-based and model-free approaches. To our knowledge, this is the first article that develops statistically sound OPE methods in offline RL with double inhomogeneities. It contributes to a deeper understanding of OPE in environments, where standard RL assumptions are not met, and provides several practical approaches in these settings. We establish the theoretical properties of the proposed value estimators and empirically show that our approach outperforms state-of-the-art methods. Finally, we illustrate our method on a dataset from the Medical Information Mart for Intensive Care. An R implementation of the proposed procedure is available at https://github.com/ZeyuBian/2FEOPE. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2024.2395593 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:120:y:2025:i:550:p:1102-1114

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2024.2395593

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-07-02
Handle: RePEc:taf:jnlasa:v:120:y:2025:i:550:p:1102-1114