Valid Inference After Causal Discovery
Paula Gradu,
Tijana Zrnic,
Yixin Wang and
Michael I. Jordan
Journal of the American Statistical Association, 2025, vol. 120, issue 550, 1127-1138
Abstract:
Causal discovery and causal effect estimation are two fundamental tasks in causal inference. While many methods have been developed for each task individually, statistical challenges arise when applying these methods jointly: estimating causal effects after running causal discovery algorithms on the same data leads to “double dipping,” invalidating the coverage guarantees of classical confidence intervals. To this end, we develop tools for valid post-causal-discovery inference. Across empirical studies, we show that a naive combination of causal discovery and subsequent inference algorithms leads to highly inflated miscoverage rates; on the other hand, applying our method provides reliable coverage while allowing for a trade-off between causal discovery accuracy and confidence interval width. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2024.2402089 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:120:y:2025:i:550:p:1127-1138
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2024.2402089
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().