EconPapers    
Economics at your fingertips  
 

Neyman-Pearson Multi-Class Classification via Cost-Sensitive Learning

Ye Tian and Yang Feng

Journal of the American Statistical Association, 2025, vol. 120, issue 550, 1164-1177

Abstract: Most existing classification methods aim to minimize the overall misclassification error rate. However, in applications such as loan default prediction, different types of errors can have varying consequences. To address this asymmetry issue, two popular paradigms have been developed: the Neyman-Pearson (NP) paradigm and the cost-sensitive (CS) paradigm. Previous studies on the NP paradigm have primarily focused on the binary case, while the multi-class NP problem poses a greater challenge due to its unknown feasibility. In this work, we tackle the multi-class NP problem by establishing a connection with the CS problem via strong duality and propose two algorithms. We extend the concept of NP oracle inequalities, crucial in binary classifications, to NP oracle properties in the multi-class context. Our algorithms satisfy these NP oracle properties under certain conditions. Furthermore, we develop practical algorithms to assess the feasibility and strong duality in multi-class NP problems, which can offer practitioners the landscape of a multi-class NP problem with various target error levels. Simulations and real data studies validate the effectiveness of our algorithms. To our knowledge, this is the first study to address the multi-class NP problem with theoretical guarantees. The proposed algorithms have been implemented in the R package npcs, which is available on CRAN. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2024.2402567 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:120:y:2025:i:550:p:1164-1177

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2024.2402567

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-07-02
Handle: RePEc:taf:jnlasa:v:120:y:2025:i:550:p:1164-1177