EconPapers    
Economics at your fingertips  
 

Rate-Optimal Rank Aggregation with Private Pairwise Rankings

Shirong Xu, Will Wei Sun and Guang Cheng

Journal of the American Statistical Association, 2025, vol. 120, issue 550, 737-750

Abstract: In various real-world scenarios, such as recommender systems and political surveys, pairwise rankings are commonly collected and used for rank aggregation to derive an overall ranking of items. However, preference rankings can reveal individuals’ personal preferences, highlighting the need to protect them from exposure in downstream analysis. In this article, we address the challenge of preserving privacy while ensuring the utility of rank aggregation based on pairwise rankings generated from a general comparison model. A common privacy protection strategy in practice is the use of the randomized response mechanism to perturb raw pairwise rankings. However, a critical challenge arises because the privatized rankings no longer adhere to the original model, resulting in significant bias in downstream rank aggregation tasks. To address this, we propose an adaptive debiasing method for rankings from the randomized response mechanism, ensuring consistent estimation of true preferences and enhancing the utility of downstream rank aggregation. Theoretically, we provide insights into the relationship between overall privacy guarantees and estimation errors in private ranking data, and establish minimax rates for estimation errors. This enables the determination of optimal privacy guarantees that balance consistency in rank aggregation with privacy protection. We also investigate convergence rates of expected ranking errors for partial and full ranking recovery, quantifying how privacy protection affects the specification of top-K item sets and complete rankings. Our findings are validated through extensive simulations and a real-world application. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2025.2484843 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:120:y:2025:i:550:p:737-750

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2025.2484843

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-07-02
Handle: RePEc:taf:jnlasa:v:120:y:2025:i:550:p:737-750