EconPapers    
Economics at your fingertips  
 

Robust Bayesian Modeling of Counts with Zero Inflation and Outliers: Theoretical Robustness and Efficient Computation

Yasuyuki Hamura, Kaoru Irie and Shonosuke Sugasawa

Journal of the American Statistical Association, 2025, vol. 120, issue 551, 1545-1557

Abstract: Count data with zero inflation and large outliers are ubiquitous in many scientific applications. However, posterior analysis under a standard statistical model, such as Poisson or negative binomial distribution, is sensitive to such contamination. This study introduces a novel framework for Bayesian modeling of counts that is robust to both zero inflation and large outliers. In doing so, we introduce rescaled beta distribution and adopt it to absorb undesirable effects from zero and outlying counts. The proposed approach has two appealing features: the efficiency of the posterior computation via a custom Gibbs sampling algorithm and a theoretically guaranteed posterior robustness, where extreme outliers are automatically removed from the posterior distribution. We demonstrate the usefulness of the proposed method by applying it to trend filtering and spatial modeling using predictive Gaussian processes. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2024.2447111 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:120:y:2025:i:551:p:1545-1557

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2024.2447111

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-11-05
Handle: RePEc:taf:jnlasa:v:120:y:2025:i:551:p:1545-1557