Asymptotic Guarantees for Bayesian Phylogenetic Tree Reconstruction
Alisa Kirichenko,
Luke J. Kelly and
Jere Koskela
Journal of the American Statistical Association, 2025, vol. 120, issue 551, 1569-1579
Abstract:
We derive tractable criteria for the consistency of Bayesian tree reconstruction procedures, which constitute a central class of algorithms for inferring common ancestry among DNA sequence samples in phylogenetics. Our results encompass several Bayesian algorithms in widespread use, such as BEAST, MrBayes, and RevBayes. Unlike essentially all existing asymptotic guarantees for tree reconstruction, we require no discretization or boundedness assumptions on branch lengths. Our results are also very flexible, and easy to adapt to variations of the underlying inference problem. We demonstrate the practicality of our criteria on two examples: a Kingman coalescent prior on rooted, ultrametric trees, and an independence prior on unconstrained binary trees, though we emphasize that our result also applies to nonbinary tree models. In both cases, the convergence rate we obtain matches known, frequentist results obtained using stronger boundedness assumptions, up to logarithmic factors. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2025.2485359 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:120:y:2025:i:551:p:1569-1579
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20
DOI: 10.1080/01621459.2025.2485359
Access Statistics for this article
Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson
More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().