EconPapers    
Economics at your fingertips  
 

Geodesic Mixed Effects Models for Repeatedly Observed/Longitudinal Random Objects

Satarupa Bhattacharjee and Hans-Georg Müller

Journal of the American Statistical Association, 2025, vol. 120, issue 551, 1879-1892

Abstract: Mixed effect modeling for longitudinal data is challenging when the observed data are random objects, which are complex data taking values in a general metric space without either global linear or local linear (Riemannian) structure. In such settings the classical additive error model and distributional assumptions are unattainable. Due to the rapid advancement of technology, longitudinal data containing complex random objects, such as covariance matrices, data on Riemannian manifolds, and probability distributions are becoming more common. Addressing this challenge, we develop a mixed-effects regression for data in geodesic spaces, where the underlying mean response trajectories are geodesics in the metric space and the deviations of the observations from the model are quantified by perturbation maps or transports. A key finding is that the geodesic trajectories assumption for the case of random objects is a natural extension of the linearity assumption in the standard Euclidean scenario to the case of general geodesic metric spaces. Geodesics can be recovered from noisy observations by exploiting a connection between the geodesic path and the path obtained by global Fréchet regression for random objects. The effect of baseline Euclidean covariates on the geodesic paths is modeled by another Fréchet regression step. We study the asymptotic convergence of the proposed estimates and provide illustrations through simulations and real-data applications. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2025.2474267 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:120:y:2025:i:551:p:1879-1892

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2025.2474267

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-11-05
Handle: RePEc:taf:jnlasa:v:120:y:2025:i:551:p:1879-1892