EconPapers    
Economics at your fingertips  
 

When Composite Likelihood meets Stochastic Approximation

Giuseppe Alfonzetti, Ruggero Bellio, Yunxiao Chen and Irini Moustaki

Journal of the American Statistical Association, 2025, vol. 120, issue 551, 1906-1918

Abstract: A composite likelihood is an inference function derived by multiplying a set of likelihood components. This approach provides a flexible framework for drawing inferences when the likelihood function of a statistical model is computationally intractable. While composite likelihood has computational advantages, it can still be demanding when dealing with numerous likelihood components and a large sample size. This article tackles this challenge by employing an approximation of the conventional composite likelihood estimator based on a stochastic optimization procedure. This novel estimator is shown to be asymptotically normally distributed around the true parameter. In particular, based on the relative divergent rate of the sample size and the number of iterations of the optimization, the variance of the limiting distribution is shown to compound for two sources of uncertainty: the sampling variability of the data and the optimization noise, with the latter depending on the sampling distribution used to construct the stochastic gradients. The advantages of the proposed framework are illustrated through simulation studies on two working examples: an Ising model for binary data and a gamma frailty model for count data. Finally, a real-data application is presented, showing its effectiveness in a large-scale mental health survey. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/01621459.2024.2436219 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlasa:v:120:y:2025:i:551:p:1906-1918

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UASA20

DOI: 10.1080/01621459.2024.2436219

Access Statistics for this article

Journal of the American Statistical Association is currently edited by Xuming He, Jun Liu, Joseph Ibrahim and Alyson Wilson

More articles in Journal of the American Statistical Association from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-11-05
Handle: RePEc:taf:jnlasa:v:120:y:2025:i:551:p:1906-1918