Multivariate Seasonal Adjustment, Economic Identities, and Seasonal Taxonomy
Tucker McElroy ()
Journal of Business & Economic Statistics, 2017, vol. 35, issue 4, 611-625
Abstract:
This article extends the methodology for multivariate seasonal adjustment by exploring the statistical modeling of seasonality jointly across multiple time series, using latent dynamic factor models fitted using maximum likelihood estimation. Signal extraction methods for the series then allow us to calculate a model-based seasonal adjustment. We emphasize several facets of our analysis: (i) we quantify the efficiency gain in multivariate signal extraction versus univariate approaches; (ii) we address the problem of the preservation of economic identities; (iii) we describe a foray into seasonal taxonomy via the device of seasonal co-integration rank. These contributions are developed through two empirical studies of aggregate U.S. retail trade series and U.S. regional housing starts. Our analysis identifies different seasonal subcomponents that are able to capture the transition from prerecession to postrecession seasonal patterns. We also address the topic of indirect seasonal adjustment by analyzing the regional aggregate series. Supplementary materials for this article are available online.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1080/07350015.2015.1123159 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:jnlbes:v:35:y:2017:i:4:p:611-625
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/UBES20
DOI: 10.1080/07350015.2015.1123159
Access Statistics for this article
Journal of Business & Economic Statistics is currently edited by Eric Sampson, Rong Chen and Shakeeb Khan
More articles in Journal of Business & Economic Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().