EconPapers    
Economics at your fingertips  
 

Using artificial neural network and multivariate analysis techniques to evaluate road operating conditions

Gianluca Dell’Acqua, Mario De Luca and Daiva Žilionienė

Journal of Risk Research, 2018, vol. 21, issue 6, 679-691

Abstract: Regional paved roads are low volume roads with a prevalence of heavy traffic. In the world, these roads concern about 80% of the total road network; however, the traffic that affects these roads is about 20%. Since regional roads are characterized by weak demand, budget for their management/maintenance is very low. This produces considerable difficulties in the choice of strategies for maintenance planning and scheduling. For this reason, the recurring topics of research in this field deal with typical roads issues and aim to develop low cost tools and methods. The study proposes a decision support system to evaluate regional paved roads operating condition in relation to the hydrogeological situation. In particular, the system allows to evaluate in a quick and easy manner, the operating conditions of the road, through low-cost tools (i.e. using low economic resources). This is very useful in the case of LVRs because administrations for these roads have a limited budget. The procedure is developed on a regional paved roads network based on more than 80 roads located in Southern Italy. Data is collected by direct surveys in the field and is integrated with cartography and information available in road agency records. From data analysis, obtained using two different techniques, an easy and quick use procedure is made. In particular, Model 1 is built through multivariate analysis and Model 2 using the artificial neural network (ANN) technique. The results show the validity of the two models in Regional paved roads operating conditions estimation in relation to hydrogeological situations of sites. Both models show good reliability. In particular, the first model (Model 1) is characterized by a high level of significance (p < 0.01) and by a coefficient of determination equal to 0.82. Comparative tests between the second model (Model 2) on which standard tests cannot be performed for obvious reasons, and the first model (Model 1). The results show that the ANN model (model 2), characterized by lower residual, simulates more accurately than the second (Model 1).

Date: 2018
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/13669877.2016.1264445 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:jriskr:v:21:y:2018:i:6:p:679-691

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/RJRR20

DOI: 10.1080/13669877.2016.1264445

Access Statistics for this article

Journal of Risk Research is currently edited by Bryan MacGregor

More articles in Journal of Risk Research from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:jriskr:v:21:y:2018:i:6:p:679-691