EconPapers    
Economics at your fingertips  
 

Robust reduced-order sliding mode observer design

Elbrous M. Jafarov

International Journal of Systems Science, 2011, vol. 42, issue 4, 567-577

Abstract: In this article, a triple state and output variable transformation-based method combined with linear matrix inequality (LMI) techniques to design a new robust reduced-order sliding mode observer for perturbed linear multiple-input and multiple-output systems is developed. The state and output variables of the original system are triple transformed into suitable canonical form coordinates to facilitate the design of a reduced-order observer. The existing transformations are summarised in this study and presented systematically. A new combined observer configuration is proposed and compared with another type of observers. Global asymptotical stability LMI and sliding mode existence conditions for the coupled observer error system are derived using Lyapunov full quadratic form. Reaching and sliding modes of motion of decoupled observer error system are discussed as well. Two numerical and simulation examples are given to illustrate the usefulness of the proposed design techniques.

Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2010.533031 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:42:y:2011:i:4:p:567-577

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2010.533031

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:42:y:2011:i:4:p:567-577