Operator-based robust control for nonlinear systems with Prandtl–Ishlinskii hysteresis
Mingcong Deng,
Changan Jiang,
Akira Inoue and
Chun-Yi Su
International Journal of Systems Science, 2011, vol. 42, issue 4, 643-652
Abstract:
This article presents an operator-based robust control method for nonlinear systems with Prandtl–Ishlinskii (PI) hysteresis. On the existence of the hysteresis, the system usually exhibits undesirable oscillations and even instability. While addressing the hysteresis, PI model is adopted to describe it. Especially, the PI model is decomposed into two terms: an invertible part and a disturbance part. In this way, the invertible part could be considered as a part of the nonlinear system. Based on the concept of Lipschitz's operator and the robust right coprime factorisation condition, a robust control design scheme is given to guarantee the bounded input bounded output stability of the obtained system. Further, a tracking operator design method is given to ensure the control system output-tracking performance under the existence of the disturbance part. Numerical simulation results are presented to validate the effectiveness of the proposed method.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207720903151318 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:42:y:2011:i:4:p:643-652
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207720903151318
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().