Optimal management for infinite capacity -policy M/G/1 queue with a removable service station
Y.C. Chang and
W.L. Pearn
International Journal of Systems Science, 2011, vol. 42, issue 7, 1075-1083
Abstract:
In this article, we consider an infinite capacity N-policy M/G/1 queueing system with a single removable server. Poisson arrivals and general distribution service times are assumed. The server is controllable that may be turned on at arrival epochs or off at service completion epochs. We apply a differential technique to study system sensitivity, which examines the effect of different system input parameters on the system. A cost model for infinite capacity queueing system under steady-state condition is developed, to determine the optimal management policy at minimum cost. Analytical results for sensitivity analysis are derived. We also provide extensive numerical computations to illustrate the analytical sensitivity properties obtained. Finally, an application example is presented to demonstrate how the model could be used in real applications to obtain the optimal management policy.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2011.570480 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:42:y:2011:i:7:p:1075-1083
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2011.570480
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().