Robust distributed state estimation for sensor networks with multiple stochastic communication delays
Jinling Liang,
Bo Shen,
Hongli Dong and
James Lam
International Journal of Systems Science, 2011, vol. 42, issue 9, 1459-1471
Abstract:
This article is concerned with the robust distributed state estimation problem for a class of uncertain sensor networks with multiple stochastic communication delays. A sequence of mutually independent random variables obeying the Bernoulli distribution is introduced to account for the randomly occurred communication delays. Both the discrete-time target plant and the sensor model are subject to parameter uncertainties as well as stochastic disturbance. The parameter uncertainties are norm-bounded and enter both the system and the measurement matrices. The external stochastic disturbance is given in the form of a scalar Wiener process. Through available output measurements from not only each individual sensor but also its neighbouring sensors, we aim to design distributed state estimators in order to approximate the state of the target plant. By using the Kronecker product, stochastic analysis is carried out to derive a sufficient criterion ensuring the estimation error systems to be convergent in the mean square sense for all randomly occurred delays, admissible stochastic disturbance and parameter uncertainties. Then, an explicit expression of the individual estimator is given in terms of the solution to a convex optimisation problem that can be easily solved by using the semi-definite programme method. A numerical example is given at the end of this article to demonstrate the usefulness of the developed theoretical results.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2010.550402 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:42:y:2011:i:9:p:1459-1471
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2010.550402
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().