Distributed ℋ filtering for repeated scalar nonlinear systems with random packet losses in sensor networks
Hongli Dong,
James Lam and
Huijun Gao
International Journal of Systems Science, 2011, vol. 42, issue 9, 1507-1519
Abstract:
This article is concerned with the distributed ℋ∞ filtering problem for sensor networks with repeated scalar nonlinearities and multiple probabilistic packet losses. The class of nonlinear systems is represented by a discrete-time state-space model involving repeated scalar nonlinearities that cover several types of frequently investigated nonlinearities as special cases. A number of stochastic variables, all of which are mutually independent but satisfy a certain probabilistic distribution in the interval [0, 1], are introduced to account for the packet dropout phenomena occurring in the channels from the original system to the networked sensors. The concept of average ℋ∞ index is first introduced to measure the overall performance of the sensor networks. Then, by utilising available measurement information from not only each individual sensor but also its neighbouring sensors according a given topology, stability analysis is carried out to obtain sufficient conditions for ensuring stochastic stability as well as the prescribed average ℋ∞ performance constraint. The solution of the parameters of the distributed filters is characterised in terms of the feasibility of a convex optimisation problem. Finally, a simulation study is conducted for a factory production line in order to demonstrate the effectiveness of the developed theoretical results.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2010.550403 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:42:y:2011:i:9:p:1507-1519
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2010.550403
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().